Identification of a neural pathway governing satiety in Drosophila
نویسندگان
چکیده
Satiety cues a feeding animal to cease further ingestion of food, thus protecting it from excessive energy gain. Impaired control of satiety is often associated with feeding-related disorders such as obesity. In our recent study, we reported the identification of a neural pathway that expresses the myoinhibitory peptide (MIP), critical for satiety responses in Drosophila. Targeted silencing of MIP neuron activity strikingly increased the body weight (BW) through elevated food intake. Similarly, genetic disruption of the gene encoding MIP also elevated feeding and BW. Suppressing the MIP pathway behaviorally transformed the satiated flies to feed similar to the starved ones, with augmented sensitivity to food. Conversely, temporal activation of MIP neuron markedly reduced the food intake and BW, and blunted the sensitivity of the starved flies to food as if they have been satiated. Shortly after termination of MIP neuron activation, the reduced BW reverted to the normal level along with a strong feeding rebound. Together our results reveal the switch-like role of the MIP pathway in feeding regulation by controlling satiety. [BMB Reports 2016; 49(3): 137-138].
منابع مشابه
Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila
Although several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food ...
متن کاملIdentification of Structural Defects Using Computer Algorithms
One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed, and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and re...
متن کاملNeural Circuits: Anatomy of a Sexual Behavior
Females of many species, once mated, undergo a rapid change in reproductive physiology and behavior, shifting from a sexually receptive state to one devoted to the rearing of offspring. Two recent reports shed light on the neural circuitry governing the female post-mating response in the fruit fly Drosophila, providing insight into the neurobiological processes governing a complex behavior.
متن کاملRhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification ...
متن کاملDouble Cracks Identification in Functionally Graded Beams Using Artificial Neural Network
This study presents a new procedure based on Artificial Neural Network (ANN) for identification of double cracks in Functionally Graded Beams (FGBs). A cantilever beam is modeled using Finite Element Method (FEM) for analyzing a double-cracked FGB and evaluation of its first four natural frequencies for different cracks depths and locations. The obtained FEM results are verified against availab...
متن کامل